Нанотехнологии - УрФО

Перейти на основной сайт
ИА ИНВУР Логотип Инновационного портала УрФО

Рейтинг@Mail.ru
Рейтинг ресурсов "УралWeb"

Rambler's Top100

Вы здесь: Главная // Публикации

Ученые нашли способ увеличить КПД лампы накаливания

Добавлено: 2016-01-14, просмотров: 181



Новый тип лампы накаливания конвертирует инфракрасные фотоны в видимый свет. Фотография: MIT Новый тип лампы накаливания конвертирует инфракрасные фотоны в видимый свет. Фотография: MIT

Исследователи из Массачусетского технологического института во главе с физиком Огненом Иличем придумали способ увеличить КПД лампы накаливания. Результаты работы были опубликованы в журнале Nature Nanotechnology.

Идея ученых заключалась в том, чтобы ограничить испускание лампой тепла во внешнюю среду и использовать это тепло для нагревания самой лампы. Ключевым для этого было получить материал, который бы отражал инфракрасное излучение, но при этом был бы прозрачен в видимой области спектра. Ученые воспользовались фотонными кристаллами — классом материалов сложной слоистой структуры, которые за счет своей периодичности могут пропускать или отражать свет разной длины волны.

Для создания фотонных кристаллов физики использовали лист стекла толщиной в 1 мм и нанесли на него 90 чередующихся слоев оксида тантала и диоксида кремния. Эти слои, толщина которых подбиралась с помощью компьютерного моделирования, придают кристаллу полупроводниковые свойства: он способен пропускать свет и отражать ИК-излучение. Кроме того, вместо нити в лампе была использована вольфрамовая лента, которая может поглотить большую часть ИК-излучения, отраженного нанозеркалами. Как сообщается в статье, использование фотонных кристаллов помогло повысить КПД лампы накаливания с обычных 5 до 6,6 процентов .

Новые лампы накаливания еще далеки от коммерческого продукта, однако физики отмечают, что использование дополнительных наноматериалов сложной структуры потенциально может увеличить КПД до 40 процентов. Лампа накаливания испускает свет за счет прохождения электрического тока по витой вольфрамовой проволоке. Благодаря электрическому сопротивлению проводник нагревается до 2000—2800 градусов Кельвина.  

Автор: Александр Еникеев


Источник(и):

nplus1.ru